经济数学分析引论(英文)电子书 1 Introduction 13 1.1 Rules of logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 Taxonomy of Proofs . . . . . . . . . . . . . . . . . . . . . . . 17 1.3 Bibliography for Chapter 1 . . . . . . . . . . . . . . . . . . . . 19 2 SetTheory 21 2.1 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.1 Algebraic properties of set operations . . . . . . . . . . 24 2.2 Cartesian Products . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 Equivalence relations . . . . . . . . . . . . . . . . . . . 25 2.3.2 Order relations . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Correspondences and Functions . . . . . . . . . . . . . . . . . 30 2.4.1 Restrictions and extensions . . . . . . . . . . . . . . . 32 2.4.2 Composition of functions . . . . . . . . . . . . . . . . . 32 2.4.3 Injections and inverses . . . . . . . . . . . . . . . . . . 33 2.4.4 Surjections and bijections . . . . . . . . . . . . . . . . 33 2.5 Finite and InÞnite Sets . . . . . . . . . . . . . . . . . . . . . . 34 2.6 Algebras of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 Bibliography for Chapter 2 . . . . . . . . . . . . . . . . . . . . 43 2.8 End of Chapter Problems. . . . . . . . . . . . . . . . . . . . . 44 3 The Space of Real Numbers 45 3.1 The Field Axioms . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 The Order Axioms . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 The Completeness Axiom . . . . . . . . . . . . . . . . . . . . 50 3.4 Open and Closed Sets . . . . . . . . . . . . . . . . . . . . . . 53 3.5 Borel Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 4 CONTENTS 3.6 Bibilography for Chapter 3 . . . . . . . . . . . . . . . . . . . . 63 3.7 End of Chapter Problems. . . . . . . . . . . . . . . . . . . . . 64 4 MetricSpaces 65 4.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.1.1 Convergence of functions . . . . . . . . . . . . . . . . . 75 4.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.1 Completion of ametric space. . . . . . . . . . . . . . . 80 4.3 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.5 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . 88 4.5.1 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5.2 A Þnite dimensional vector space: Rn . . . . . . . . . . 93 4.5.3 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.5.4 An inÞnite dimensional vector space: !p . . . . . . . . . 99 4.6 Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . 105 4.6.1 Intermediate value theorem . . . . . . . . . . . . . . . 108 4.6.2 Extreme value theorem . . . . . . . . . . . . . . . . . . 110 4.6.3 Uniformcontinuity . . . . . . . . . . . . . . . . . . . . 111 4.7 Hemicontinuous Correspondences . . . . . . . . . . . . . . . . 113 4.7.1 Theoremof theMaximum . . . . . . . . . . . . . . . . 122 4.8 Fixed Points and ContractionMappings . . . . . . . . . . . . 127 4.8.1 Fixed points of functions . . . . . . . . . . . . . . . . . 127 4.8.2 Contractions . . . . . . . . . . . . . . . . . . . . . . . . 130 4.8.3 Fixed points of correspondences . . . . . . . . . . . . . 132 4.9 Appendix - Proofs in Chapter 4 . . . . . . . . . . . . . . . . . 138 4.10 Bibilography for Chapter 4 . . . . . . . . . . . . . . . . . . . . 144 4.11 End of Chapter Problems . . . . . . . . . . . . . . . . . . . . 145 5 Measure Spaces 149 5.1 LebesgueMeasure . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.1.1 Outermeasure . . . . . . . . . . . . . . . . . . . . . . 151 5.1.2 L−measurable sets . . . . . . . . . . . . . . . . . . . . 154 5.1.3 Lebesguemeets borel . . . . . . . . . . . . . . . . . . . 158 5.1.4 L-measurablemappings . . . . . . . . . . . . . . . . . 159 5.2 Lebesgue Integration . . . . . . . . . . . . . . . . . . . . . . . 170 5.2.1 Riemann integrals . . . . . . . . . . . . . . . . . . . . . 170 5.2.2 Lebesgue integrals . . . . . . . . . . . . . . . . . . . . 172 CONTENTS 5 5.3 GeneralMeasure . . . . . . . . . . . . . . . . . . . . . . . . . 184 5.3.1 SignedMeasures . . . . . . . . . . . . . . . . . . . . . 185 5.4 Examples UsingMeasure Theory . . . . . . . . . . . . . . . . 194 5.4.1 Probability Spaces . . . . . . . . . . . . . . . . . . . . 194 5.4.2 L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.5 Appendix - Proofs in Chapter 5 . . . . . . . . . . . . . . . . . 200 5.6 Bibilography for Chapter 5 . . . . . . . . . . . . . . . . . . . . 211 6 Function Spaces 213 6.1 The set of bounded continuous functions . . . . . . . . . . . . 216 6.1.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . 216 6.1.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . 218 6.1.3 Approximation . . . . . . . . . . . . . . . . . . . . . . 221 6.1.4 Separability of C(X) . . . . . . . . . . . . . . . . . . . 227 6.1.5 Fixed point theorems . . . . . . . . . . . . . . . . . . . 227 6.2 Classical Banach spaces: Lp . . . . . . . . . . . . . . . . . . . 229 6.2.1 Additional Topics in Lp(X) . . . . . . . . . . . . . . . 235 6.2.2 Hilbert Spaces (L2(X)) . . . . . . . . . . . . . . . . . . 237 6.3 Linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . 241 6.4 Linear Functionals . . . . . . . . . . . . . . . . . . . . . . . . 245 6.4.1 Dual spaces . . . . . . . . . . . . . . . . . . . . . . . . 248 6.4.2 Second Dual Space . . . . . . . . . . . . . . . . . . . . 252 6.5 Separation Results . . . . . . . . . . . . . . . . . . . . . . . . 254 6.5.1 Existence of equilibrium . . . . . . . . . . . . . . . . . 260 6.6 Optimization of Nonlinear Operators . . . . . . . . . . . . . . 262 6.6.1 Variational methods on inÞnite dimensional vector spaces262 6.6.2 Dynamic Programming . . . . . . . . . . . . . . . . . . 274 6.7 Appendix - Proofs for Chapter 6 . . . . . . . . . . . . . . . . . 284 6.8 Bibilography for Chapter 6 . . . . . . . . . . . . . . . . . . . . 297 7 Topological Spaces 299 7.1 Continuous Functions and Homeomorphisms . . . . . . . . . . 302 7.2 Separation Axioms . . . . . . . . . . . . . . . . . . . . . . . . 303 7.3 Convergence and Completeness . . . . . . . . . . . . . . . . . 305 |
查看评论
已有0位网友发表了看法