0 前言 能源是当今社会发展所面临的一个重大问题。随着全球经济的快速发展和可持续战略的实施,能源的利用问题也摆在了非常重要的位置。冷热电联供系统作为一种新的能源利用方式具有无可比拟的优势。冷热电联供系统用天然气作为一次能源,随着世界天然气产量的增加,天然气将大大改变现有的能源结构,成为能源利用新的主力;而冷热电联供系统作为一种能量梯级利用系统,利用一次能源驱动发动机发电,利用余热利用设备对余热进行回收利用,同时提供电力,热量和冷量,这样能大大提高能源的利用效率[1]。基于以上优点,冷热电联供系统成为各国竞相研究的对象,并且在美国、日本和欧洲各国都有大规模的实际应用。冷热电联供系统的一个重要的研究方向是整个系统的建模,好的系统模型可以用来确定系统的可行性和分析预测系统的运行,以及用于系统的控制策略研究,并可以为系统的优化匹配和优化运行提供指导。以往的关于联供系统的数学模型都是基于热力学基本原理,建立简单的数学模型。而联供系统的特性是高度非线性化的,传统的热力学模型无法准确描述其运行特性,因此需要用另外的一种思路去建立模型,而人工神经网络则从一定程度上满足了这一需要。人工神经网络吸取了生物神经网络的许多优点,表现在: (1)高度的并行性。 (2)高度的非线性全局作用。 (3)良好的容错性与联想记忆功能。 (4)十分强的自适应、自学习能力。[2] 近年来,人工神经网络已经在制冷空调方面有了一些应用。[5]、[7] 1 微型冷热电联供系统实验装置设计 1.1 系统描述 上海交通大学制冷与低温工程研究所孔祥强[1]等建立了制冷功率在10 kW左右的微型冷热电联供系统试验台,整个系统采用了一台小型燃气发电机组和一台研究所自己研制的余热型吸附式制冷机,其系统图见图1。系统设计参数见表1。 图1 微型冷热电联供系统流程图 1.2 实验参数仪器 系统的测试参数包括 (1)热水循环、冷却塔冷却水循环、冷冻水循环的状态参数(主要有温度和流量); (2)液化气供应的状态参数(主要有压力、温度和流量); ...... |
查看评论
已有0位网友发表了看法